
ATP/HPO Installation and Operation

ATP/HPO

Version 1.4

MVS Operating Environment

Publication number PAT0001.012

© Copyright 2001 PassGo Technologies Ltd. All rights reserved.

Proprietary and Confidential Information of PassGo Technologies Ltd.

Published by:

PassGo Technologies Ltd, Horton Manor, Ilminster, Somerset, TA19 9PY, England.

Publication number PAT0001.012

Twelth Edition (September 2001)

This book refers to a number of hardware and software products that are produced by other companies. In most, if not all cases,
the names of these products are claimed as trademarks by the companies that manufacture them. It is not our intention to claim
either the products or their names or trademarks as our own.

Changes will be made periodically to the information contained in this book. If your book does not
accurately reflect the level of product you are using, this may be due to a fix being applied to the
product which has still to be released as a book update.

Preface iii

Preface

Prerequisites for running ATP/HPO

ATP/HPO has been designed to run under the latest releases of MVS, MVS/XA and
MVS/ESA running ACF/VTAM V3.3 and earlier, in both SNA and NON-SNA
environments.

Devices supported by ATP/HPO

• all models of 317x, 318x, 319x and 327x (or their equivalents), utilizing the
maximum available screen display area

• the 3290 Information Panel with each interactive panel in 3270 mode

• LUTYPE 1 printers (SNA printers with the SCS feature)

• devices attached through NTO

• IBM 3767 and compatible devices

Application sessions using MULTSESS/HPO are supported in the terminal’s native
mode.

Terminal to MULTSESS/HPO sessions are supported in model 2 mode.

About the ATP/HPO Installation and Operation Guide

This installation and operation guide is for use by technical personnel who are going
to install, customize and use ATP/HPO.

The contents of this guide should be read before installation.

Related publications

The MULTSESS/HPO User Installation Manual describes how to install MULTSESS/
HPO in your environment.

The MULTSESS/HPO User Reference Manual contains details of commands that the
user may enter at the terminal and error messages that may be issued to the terminal.

The MULTSESS/HPO User Reference Manual should be read in conjunction with the
MULTSESS/HPO User Installation Manual when certain installation tasks are being
performed, such as defining command sequences in the user profile dataset, and may
be used as a stand-alone reference work by terminal users.

The MULTSESS/HPO Technical Reference and Customization Reference manuals
provide the necessary technical background and customization procedures for running
MULTSESS/HPO.

iv ATP/HPO Installation and Operation Publication number PAT0001.012

Future Publication changes

Changes will be made periodically to this publication to reflect new releases and
facilities. When this occurs you will be supplied with update pages or a new updated
manual.

Reader’s comment form

A form for the reader’s comments is provided at the back of this manual.

Any information supplied may be used or distributed by the authors in any manner
considered appropriate without incurring any obligation whatsoever.

Table of contents v

Table of contents

Preface

Chapter 1 - Introduction to ATP/HPO

What is ATP/HPO? 1.1
Interfaces to MULTSESS/HPO 1.1
Major features of ATP/HPO 1.1

Chapter 2 - Installation overview

Loading the distribution tape 2.1
Startup options 2.2
JCL to run ATP/HPO 2.5
Script management 2.6
Script libraries 2.7
Invoking scripts 2.8
Using variables in scripts 2.9
System operator interface 2.10
Writing your own scripts 2.11
Interpreting ATP/HPO statistics 2.12
Integrity and performance 2.13

Chapter 3 - MULTSESS/HPO ATP commands

ATPCMD 3.2
ATPCMD ABEND 3.3
ATPCMD DISPLAY 3.4
ATPCMD RESET 3.5
ATPCMD SHUTDOWN 3.6
ATPCMD TRACE 3.7
ATPDIR 3.8
ATPVAR 3.9
RUN 3.10
TERMRUN 3.11

Chapter 4 - ATP/HPO language statements

Writing scripts 4.1
Syntax rules 4.1
Other rules 4.1
ATP language statements 4.2
Restricted keyboard functions in version 1.4 4.20

Chapter 5 - ATP/HPO messages

Error reporting 5.1
Messages to the system operator 5.2
ATP/HPO log messages 5.4
Script load error codes 5.10
Error codes 5.11
Script termination codes 5.12
ATP/HPO termination error codes 5.13

Appendix - ATP/HPO sample script

Index

vi ATP/HPO Installation and Operation Publication number PAT0001.012

This page intentionally left blank

Chapter 1 - Introduction to ATP/HPO 1.1

Chapter 1 - Introduction to ATP/HPO

1This is the autonumber for the chapter - hide with a white rectangle.

What is ATP/HPO?

ATP is an advanced VTAM application allowing, in the form of scripts, the pre-coding
of statements that emulate keyboard functions.

ATP eliminates the keying of repetitive terminal-based functions. The MULTSESS/HPO
user need only invoke an ATP script to automatically perform any number of inputs.

Scripts may include decision making functions based on data from the application or
variable data supplied by the MULTSESS/HPO user to provide alternative navigation
through the script, or to detect abnormal conditions and take corrective action.

Interfaces to MULTSESS/HPO

ATP V1.4 interfaces to MULTSESS/HPO V1.1 to provide a virtual user concept to
automate common or repetitive transactions to any VTAM application, eg logon to
CICS, select a transaction from the CICS menu and initiate the transaction, all via a
single keystroke. The end user sees only the MULTSESS/HPO menu followed by the
CICS transaction screen, drastically reducing the network traffic and overhead and
increasing end-user productivity.

Major features of ATP/HPO

• No limit to the number of users running scripts

• A user can have many scripts running concurrently

• Background scripts can run concurrent with normal terminal activity

• Automatic script invocation at MULTSESS/HPO logon

• Automatic script invocation at application selection time

• Protection against unauthorized use of scripts

• Shared or exclusive script datasets

• Controllable environment

• Does not affect the number of MULTSESS/HPO users

• Provides script support for multiple MULTSESS/HPO address spaces

1.2 ATP/HPO Installation and Operation Publication number PAT0001.012

This page intentionally left blank

Chapter 2 - Installation overview 2.1

Chapter 2 - Installation overview

2This is the autonumber for the chapter - hide with a white rectangle.

1. Review the distribution material

Accompanying this manual you should find an Installation Guide and the product
installation tape. If you have not received either of these, contact your local
support office before attempting the installation process.

You are strongly advised to review the whole of this chapter and the Installation
Guide before commencing installation.

Refer also to the following parts of the MULTSESS/HPO User Installation Manual:

Chapter 2 - VTAM updates

Chapter 3 - Defining applications to MULTSESS/HPO - SCRIPT statement

Chapter 5 - Pre-startup and startup options - ATP-MAXIMUM-RUSIZE

Chapter 7 - Creating the ATP/HPO control table

2. Load the distribution libraries

The steps required to load the distribution tape are described in the
accompanying Installation Guide.

3. Define ATP to VTAM

The following VTAM changes are required:

• an application entry for ATP in SYS1.VTAMLST

• If ATP is cross domain, an entry in the CDRSC table in the other
domains.

4. Startup options

Review the possible startup parameters as described in Startup options on page
2.2.

5. JCL to run ATP

Create the JCL required to run ATP as described in JCL to run ATP/HPO on page
2.5.

Loading the distribution tape

Installation Guide
The Installation Guide accompanying the distribution tape lists the tape contents and
describes the steps required to install ATP on your system.

2.2 ATP/HPO Installation and Operation Publication number PAT0001.012

Startup options

The following parameters must be specified via the ATPPARM DD statement in the
JCL used to run ATP/HPO.

ACBNAME=name

Used to indicate to ATP the ACBNAME to use during execution. This parameter is
mandatory.

ATTRIBUTE=BLANK

Specifies that attribute characters in the outbound datastream are to be treated as
blanks (X’40’) when testing for data strings in an IF, JUMPIF, UNTIL or WHILE script
statement.

CODE=aaaaaaaaa

Defines the authorization code, based on the CPU serial number, enabling ATP to run
as a licensed product. There is no default, the code can only be obtained from your
Support Office.

DATE=format

This controls the date format on the ATPLOG. Both the field order and separation
characters can be specified, for example:

YY:DD:MM

Default is DD/MM/YY, day, month and year separated by the slash (/) character.
Note: In compliance with year 2000 requirements, displayed dates now have a four

digit year format. The format of the DATE= startup option remains
unchanged, ie the year format is a two digit entry (YY) which is changed to
four digits (YYYY) for display.

LIBRARY-PREFIX=prefix

This is the leading part of the dataset name used to build the name of a private script
library. Specify a valid operating system dataset name qualifier. The maximum length
is 35 characters if the LIBRARY-SUFFIX parameter is omitted, otherwise the combined
length of prefix and suffix must not exceed 34 characters. Refer to Script libraries on
page 2.7 for further details.

LIBRARY-SUFFIX=suffix

This is the trailing portion of the dataset name used to build the name of a private
script library. Specify a valid operating system dataset name suffix. The maximum
length is 35 characters if the LIBRARY-PREFIX parameter is omitted, otherwise the
combined length of prefix and suffix must not exceed 34 characters. Refer to Script
libraries on page 2.7 for further details.

LOG-PAGE-LENGTH=nn

Specifies the number of lines per page, maximum 99, that ATP will write when
producing the log of events. If omitted, the default is 60 lines per page.

MAXGOTO=nn

Specifies the maximum number of GOTO statements that can be processed
consecutively without any terminal I/O before the script is terminated. The value must
be numeric in the range 1 to 999999. This value should be set low enough to avoid the
possibility of a SCRIPT looping.

The default is 20.

Chapter 2 - Installation overview 2.3

MAXIMUM-RUSIZE=nnK|nnnnB

This controls the size of the largest REQUEST UNIT (RU), specified in bytes (B) or
kilobytes (K), that ATP/HPO can receive from a calling MULTSESS/HPO. If specified
too large, virtual storage will be wasted. If defined too small, a connection attempt
will be refused. The value specified should be equal to the largest value coded as the
ATP-MAXIMUM-RUSIZE startup option for any MULTSESS/HPO that will communicate
with this ATP/HPO address space. The value should not exceed 64K.

The default is 5K.

MAXIMUM-STATEMENTS=nnnn

nnnn specifies the maximum number of statements that will be executed before
ATP/HPO assumes an error condition has occurred (for example a loop) and
terminates execution of the script. The value should be set high enough to prevent
premature termination of valid scripts and low enough to detect an error condition.
The value may not exceed 99999.

The default is 99999.

MAXIMUM-SUBTASKS=nn

The value can be from 1 to 240 and defines the maximum number of concurrently
active I/O subtasks for loading scripts into storage. When all subtasks are in use,
requests to load new scripts will be queued until a subtask becomes available.

The default is 10.

MAXIMUM-VARIABLES=nn

The maximum number of variables per script that ATP/HPO is to allow. Refer to Using
variables in scripts on page 2.9 for further details.

The default is 10.

NULL=BLANK

Specifies that nulls (X’00’) in the outbound datastream are to be treated as blanks
(X’40’) when testing for data strings in an IF, JUMPIF, UNTIL or WHILE script
statement.

PASSWORD=acb-passwd

Allows the specification of a password for the ACB that ATP/HPO runs under.

PUBLIC-LIBRARY=dataset-name

The fully qualified name of the library where public (unrestricted) scripts are stored.
Specify a valid operating system dataset name up to a maximum of 44 characters.
Refer to Script libraries on page 2.7 for further details.

PERMANENT-SCRIPT=script/library,script/library,....

Tells ATP which scripts are to be permanently resident in storage. If library is omitted,
the public library is assumed. This statement may be coded multiple times. Refer to
Script management on page 2.6 for further details.

2.4 ATP/HPO Installation and Operation Publication number PAT0001.012

SCRIPT-STORAGE=nnnnB|nnK

The maximum amount of virtual storage ATP/HPO is to use for storing Scripts. Specify
a value in bytes (B) or kilobytes (K).

The default is 1K.

STOP/MODIFY=YES|NO

If YES is specified, operator commands can be entered from the system console using
the MVS stop (P) and modify (F) commands. Refer to System operator interface on
page 2.10 for further details.

TEST=YES|NO

Specify YES to cause ATP to always load a fresh copy of a script from disk each time
the script is invoked. An existing in-storage version of the script (including scripts
marked as permanently resident) will be deleted. Refer to Script management on page
2.6 for further details.

The default is NO.

TRACE=ON|OFF|ALL

Dependent on the setting of this option, ATP/HPO VTAM tracing routines will be
invoked. This will produce large amounts of output, cause some overhead and should
only be used on the advice of your local support office.

The default is OFF.

Chapter 2 - Installation overview 2.5

JCL to run ATP/HPO

The JCL to run ATP/HPO is defined below. It is recommended that you run it as a
started task.

Example

Note: A sample set of startup options and started task JCL is supplied in the
control library loaded from the distribution tape.

For further details, please refer to the Installation Guide that accompanies
the tape.

//ATP PROC OPT+STARTOPT

//**

//* *

//* THIS PROCEDURE EXECUTES ATP *

//* *

//**

//AT10 EXEC PGM=ATP,REGION=1024K

//STEPLIB DD DSN=CAK0001,ATPV10.LOAD,DISP=SHR

//ATPLOG DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//ATPPARM DD DSN=CAK0001.ATPV10.CNTL(&OPT).DISP=SHR

2.6 ATP/HPO Installation and Operation Publication number PAT0001.012

Script management

Script libraries
Scripts are defined as members of a script library, a standard partitioned dataset.
ATP/HPO supports multiple script libraries to assist in script management and
security.

Script statements
Script statements are stored as plain language statements, as described in
Chapter 4 - ATP/HPO language statements. No assemblies or other preprocessing
are required.

Script execution
When execution of a script is requested, ATP/HPO first checks whether the required
script is already resident in storage. If so and the script has not been marked for
deletion by a RESET command, the in-storage copy is used. Otherwise an I/O subtask
is invoked to read the script from the appropriate script library and convert it to
compressed internal format.

Initial script development
During initial script development when frequent changes are made to script library
members, it is desirable to have ATP/HPO always load a new copy of the script from
the library without the need for a RESET command. This is achieved by specifying the
TEST=YES startup option. Use of this option involves extra overhead and will increase
response times. Remember to revert to TEST=NO when script development is
complete.

I/O subtasks
The number of I/O subtasks that can be concurrently active may be limited by the
MAXIMUM-SUBTASKS= startup option. If all available subtasks are in use, outstanding
script load requests are queued pending completion of a current load operation.

Script storage
The amount of virtual storage available to hold in-storage copies of scripts may be
limited by specifying the SCRIPT-STORAGE= startup option. If the amount of available
storage is insufficient to load the new script, ATP/HPO searches for scripts to delete
from storage to make space for the new script. Scripts that have been reset and
whose use count has dropped to zero are primary candidates for deletion from
storage, followed by scripts that have the oldest time of last reference. Scripts that
are in use are never considered for deletion, even if they have been reset.

Scripts may be marked as permanently resident to prevent them ever being removed
from storage except as the result of a RESET command. The startup option
PERMANENT-SCRIPT= may be specified as many times as required to define scripts
that are never to be considered for deletion from storage.

Chapter 2 - Installation overview 2.7

Script libraries

Script storage
ATP/HPO allows scripts to be stored in an unlimited number of different script
libraries. This enables maintenance to be conveniently devolved and managed by
different departments and can provide security for scripts that invoke sensitive
functions, such as access to payroll data.

The public library
ATP must always have access to at least one library, the public library. The fully
qualified dataset name of this library must be supplied in the PUBLIC-LIBRARY=
startup parameter. Unless MULTSESS/HPO passes an alternative library identifier as
part of the script request, all scripts will be called from the public library.

Private libraries
Access to private libraries is invoked by a combination of ATP/HPO startup options
and information which MULTSESS/HPO obtains from its own ATP/HPO Control Table
and which is passed to ATP/HPO as part of the initial request to run a script for a
MULTSESS/HPO user.

ATP/HPO control table
The MULTSESS ATP/HPO Control Table is used by MULTSESS/HPO to verify that a
user is authorized to run the requested script on his particular session and to obtain
the library identifier from which the script is to be loaded. Since a single ATP/HPO
address space may service script requests from multiple copies of MULTSESS/HPO,
having a separate ATP control table for each MULTSESS/HPO address space enables
different ATP/HPO security information to be maintained independently for separate
user groups.

Starting a script
When MULTSESS/HPO asks ATP/HPO to start a script, the library id (if any) is passed
as part of the request. If no library id is passed, ATP/HPO uses its public script library,
otherwise the library id is used to build a fully qualified dataset name in conjunction
with the LIBRARY-PREFIX and LIBRARY-SUFFIX startup options. The values specified
for these parameters are ‘wrapped around’ the library id passed by MULTSESS/HPO
to form the script library name, for example:

LIBRARY-PREFIX=SYS1)
MULTSESS gives PAYROLL)==>SYS1.PAYROLL.SCRIPTS
LIBRARY-SUFFIX=SCRIPTS)

LIBRARY-PREFIX=ATP.SCRIPTS)
MULTSESS gives PENSIONS)==>ATP.SCRIPTS.PENSIONS
LIBRARY-SUFFIX parameter omitted)

Script security
The use of the ATP/HPO Control Table for script security is described in
Chapter 7 - Creating the ATP/HPO control table in the MULTSESS/HPO User
Installation Manual.

Note: Where scripts of the same name exist in more than one library, ATP/HPO
always differentiates between in-storage copies and treats them as separate
scripts. Requests to run a script, or to reset a script, always take account of
the associated library id in order to maintain security and integrity.

2.8 ATP/HPO Installation and Operation Publication number PAT0001.012

Invoking scripts

Scripts may be invoked on behalf of a MULTSESS/HPO user:

• automatically at session initiation (logon script)

• at any time during the life of a session

• automatically at session termination (logoff script)

Logon scripts
A logon script may run automatically when a session is started as the result of:

• the SCRIPT= parameter in the ADT (Application Definition Table) description
of the application. The named script will be run as part of session initiation
for all users requesting that symbolic application name. A sample ADT is
provided in Chapter 3 - Defining applications to MULTSESS/HPO in the
MULTSESS/HPO User Installation Manual.

• the script parameter on the appropriate SESSION statement in a user’s
MULTSESS/HPO directory entry. The script will be run as part of session
initiation for this user. Sample directory entries are provided in
Chapter 4 - Defining users to MULTSESS/HPO in the MULTSESS/HPO User
Installation Manual.

• the script parameter on a SESSION command, either typed at the terminal or
included in the user’s profile member. The SESSION command is described
in the MULTSESS/HPO User Reference Manual.

On-demand scripts
A user may have many scripts active concurrently. For instance, a user’s logon profile
may cause automatic initiation of several application sessions, each of which may
invoke a logon script.

A script may be run at any time during the life of a session by returning to
MULTSESS/HPO mode and using the RUN command. Care should of course be
exercised to ensure that the current application screen image is the one that the script
is expecting.

A logoff script
A logoff script may be automatically invoked using MULTSESS/HPO exit point
TPEXIT02, call code 2C and 2D. These exit points are driven whenever a TERMSESS or
TERMCOND command is issued to terminate a session without going through normal
application logoff procedures. The exit routine may discard the TERMSESS/
TERMCOND command and replace it with a RUN command to invoke an appropriate
logoff script to elegantly close down the session. Use of MULTSESS exits is described
in Chapter 5 - User exits in the MULTSESS/HPO Customization Reference Manual.

Chapter 2 - Installation overview 2.9

Using variables in scripts

Variable data
Variable data may be typed on behalf of a user by using the VAR script statement. The
variable named on the statement will be inserted at the current cursor location. After
execution of the VAR statement, the cursor will be placed at the first position
following the inserted data. This feature is very useful when coding logon scripts for
menu driven applications. A single general purpose script may handle many routes
through the menu layers based on the contents of data variables.

Variable names may be up to 255 characters long, but cannot start with a quote
(C”’”,.X’7D’).

Example

Each MULTSESS user may define up to 20 variables using the ATPVAR command (or
by supplying the appropriate commands in a MULTSESS profile member or a user exit
routine). When the user invokes a script, either directly using a RUN command or
indirectly because the application has a logon script defined in the MULTSESS ADT,
the current value of all user defined variables is passed to ATP in addition to the three
MULTSESS defined variables &SYSUSER, &SYSPASS and &SYSTERM.

The three MULTSESS variables representing userid, password and real terminal
luname are always passed to ATP as each script starts. User defined variables will be
passed up to the maximum of 20 allowed by MULTSESS, or the value specified for the
MAXIMUM-VARIABLES startup parameter. Note that the value specified for this
option includes the three standard variables. To ensure that all possible variables are
always passed specify MAXIMUM-VARIABLES=23. Specifying a smaller value will
conserve ATP storage and reduce system overhead in searching ATP’s internal
variable chain.

JUMPIF *,2 ‘ENTER USERID AND PASSWORD’

 END 4

VAR &SYSUSER

DATA ‘ ‘

VAR &SYSPASS

ENTER

JUMPIF 1,15 ‘CICS APPLICATION MENU’

 END 8

VAR ‘APPLNUM’

ENTER

JUMPIF 1.15 ‘PAYROLL TRANSACTION MENU’

 END 12

VAR ‘&TRANID’

ENTER

END

2.10 ATP/HPO Installation and Operation Publication number PAT0001.012

System operator interface

If the startup option STOP/MODIFY=YES is specified, the system operator may
monitor and control ATP/HPO using the MVS STOP (P) and MODIFY (F) commands.

Permissible commands
Permissible commands are described under the functions of the MULTSESS/HPO
ATPCMD command. (An exception is the SHUTDOWN command which is not
permissible because it is affected by a P ATP command). The ATPCMD command is
described in Chapter 3 - MULTSESS/HPO ATP commands.

For example, assuming the ATP/HPO started task name is ATP.

F ATP,DISPLAY *

F ATP,RESET script library-id

F ATP,TRACE ALL

F ATP,ABEND userid

P ATP

Chapter 2 - Installation overview 2.11

Writing your own scripts

The following guidelines should be borne in mind when writing your own scripts:

1. When a script is invoked as part of session initiation, the first screen seen by
ATP/HPO is a blank screen. The first script statement is executed at this point. If
the application normally sends a good morning message, or some other unique
application identifier, the first script statement should cause a wait until this
message arrives.

ATP script initiation may on occasion be slower than the first application response,
so that the first screen image seen by ATP/HPO already has the good morning
message in it. Therefore a conditional wait, using the UNTIL statement is
recommended.

2. For scripts designed for use within a session, rather than at session initiation, the
first ‘seen’ by ATP/HPO is the current application screen image. It is good practice
to code a test at the beginning of the script to ensure that the script has been
invoked at the expected point in the application, by examining some fixed data on
the screen, for instance:

JUMPIF 1,27 ‘ISPF/PDF PRIMARY OPTION MENU’
END 16

3. Script processing will be suspended whenever a script statement, for example the
<Enter> key or PA key, causes data to be sent inbound to the application, or when
a WAIT statement is encountered.

4. On an SNA session, script processing is resumed when an end-of-chain, OIC or LIC
RU, is received with either end-bracket or change-direction.

5. On a non-SNA session, script processing is resumed when the application next
sends unlock-keyboard.

6. A script finishes when a run-time error occurs or an END statement is
encountered. If the last action of a script is to enter data on behalf of the user, the
screen image into which the data was entered will be displayed at the user’s
terminal until the application sends a reply. If this screen is not to be seen by the
user, a WAIT statement should be coded immediately before the END statement.
This will cause the script to remain in control of the session until the application
sends a reply, ensuring that the end-user sees only the result screen.

2.12 ATP/HPO Installation and Operation Publication number PAT0001.012

Interpreting ATP/HPO statistics

ATP/HPO can maintain connections to, and process script requests from, multiple
MULTSESS/HPO address spaces.

Whenever a connection to a MULTSESS/HPO is terminated because MULTSESS/HPO
or ATP/HPO has been closed down, ATP/HPO produces statistics on its log file. The
following guidelines will prove useful in interpreting these statistics.

1. All script load activity is handled asynchronously by I/O subtasks within ATP/HPO.
For each subtask allocated, the number of script load operations, both successful
and unsuccessful, are reported. If the failure rate is high, it would indicate a
possible error in the I/O subsystem, or possibly a virtual storage shortage.

2. For each script that started to load, information concerning the script is given. If
the number of times a particular script is loaded is high, this may indicate a virtual
storage shortage, or that the script in question should be made permanently
resident, using the PERMANENT-SCRIPT startup option.

3. If the number of script completions is much less than the number of initiations, this
may indicate a large number of failures. Possible causes may be an error in the
script logic, or the occurrence of some nonstandard condition that the script was
not designed to handle, eg password expiry.

4. General figures are reported for module storage used, script storage used and the
number of script loads that were delayed by queuing for a free I/O subtask.

If the script storage used is equal to the value specified for the SCRIPT-STORAGE
startup parameter, this could indicate that more storage needs to be allocated for
holding in-storage scripts in order to prevent script requests being delayed
pending I/O load operations.

If the value reported for scripts queuing for I/O is nonzero, script requests were
delayed because no free subtask was available to load the requested script into
storage. Increasing script storage may ease the problem by allowing more scripts
to be held in-storage. Increasing the MAXIMUM-SUBTASKS startup option will
allow more I/O requests to be processed concurrently.

Chapter 2 - Installation overview 2.13

Integrity and performance

Address space
ATP runs in its own address space. A single ATP/HPO address space may provide
script services for any number of applications running in the same or different VTAM
domains.

The ATP address space can and should be run at a different dispatching priority from
MULTSESS and other applications, ensuring that ATP/HPO users do not receive
preferential service over normal users and that response times to MULTSESS/HPO and
other on-line applications are not affected. ATP/HPO can even be run on a different
CPU. Only a VTAM connection is required.

Address space separation
Address space/virtual machine separation provides increased integrity and isolates
other users from loops and other problems in user written scripts. It also ensures that
ATP or CPU requirements do not affect other users.

ATP/HPO commands
Commands are available to:

• display system data

• reload any modified scripts dynamically

• set trace options, etc.

For ease of use these commands can be issued from the MVS system operator console
or by an authorized MULTSESS/HPO user.

2.14 ATP/HPO Installation and Operation Publication number PAT0001.012

This page intentionally left blank

Chapter 3 - MULTSESS/HPO ATP commands 3.1

Chapter 3 - MULTSESS/HPO ATP commands

3This is the autonumber for the chapter - hide with a white rectangle.

This section describes the MULTSESS/HPO commands that are specific to ATP/HPO.
All commands are grouped alphabetically.

Each MULTSESS/HPO command and subcommand is assigned a command class. A
command or subcommand may only be invoked by a user of equal or higher authority
level.

Within each command the subfunctions are grouped by class. The default command
class is indicated within each command description.

Your administrator may have changed the class of some of the commands as part of
the installation process.

Command authority
A user is assigned a command authority by the system administrator in the
MULTSESS/HPO directory of users.

Minimum abbreviation
For each of the commands the minimum abbreviation is indicated.

Online help
Online HELP information is available for the commands by typing:

HELP commandname

For example:

HELP ATPCMD

Entering the HELP command without a commandname will list all the commands for
which the user is authorized.

See the HELP command for further details.

3.2 ATP/HPO Installation and Operation Publication number PAT0001.012

ATPCMD

Description Allows a MULTSESS/HPO user to issue commands to the ATP address space.

Command class B

Minimum
abbreviation

ATPCMD

Format ATPCMD function

Available
functions

ABEND abend ATP/HPO

DISPLAY display ATP/HPO status information

RESET mark in-store ATP/HPO script for deletion

SHUTDOWN shutdown ATP/HPO

TRACE start or stop ATP/HPO tracing

The functions are individually described on the following pages.

Chapter 3 - MULTSESS/HPO ATP commands 3.3

ATPCMD ABEND

Description ATP/HPO will be abended. A dump will be provided if a SYSUDUMP card is
present in the ATP/HPO startup JCL. If a userid is passed to ATP/HPO with the
ABEND request, control blocks, related to ATP/HPO requests currently in
process on behalf of the named user, will be formatted and printed on the
ATP/HPO log file.

Command class B

Minimum
abbreviation

ATPCMD ABEND

Format ATPCMD ABEND
ATPCMD ABEND userid

where:

userid is the userid to be passed to ATP/HPO with the ABEND
request.

3.4 ATP/HPO Installation and Operation Publication number PAT0001.012

ATPCMD DISPLAY

Description ATP/HPO will return the following status information about the ATP/HPO
address space:

• the amount of storage used by ATP/HPO modules

• the amount of storage used for scripts

• the amount of dynamic working storage in use by ATP/HPO

• the number of times the ATP/HPO maximum subtasks was exceeded,
resulting in user requests being queued awaiting use of a subtask
processor.

Command class B

Minimum
abbreviation

ATPCMD DISPLAY

Format ATPCMD DISPLAY

Chapter 3 - MULTSESS/HPO ATP commands 3.5

ATPCMD RESET

Description ATP/HPO will mark the in-storage copy of the named script from the indicated
library for deletion when its use count reaches zero. The next request for this
script will cause a fresh copy to be loaded from the script library. The default
is the PUBLIC library.

Command class B

Minimum
abbreviation

ATPCMD RESET

Format ATPCMD RESET script

ATPCMD RESET script libraryid

where:

script is the script to be deleted.

libraryid is the script library to load from.

3.6 ATP/HPO Installation and Operation Publication number PAT0001.012

ATPCMD SHUTDOWN

Description ATP/HPO will perform an orderly shutdown and produce run-time statistics.

Command class B

Minimum
abbreviation

ATPCMD SHUTDOWN

Format ATPCMD SHUTDOWN

Chapter 3 - MULTSESS/HPO ATP commands 3.7

ATPCMD TRACE

Description This command activates or terminates tracing within the ATP/HPO address
space. Records that trace ATP/HPO internal activity and the dataflow between
MULTSESS and ATP/HPO will be written to the file pointed to by the ATPLOG
DD statement in the JCL used to initiate ATP/HPO.

Command class B

Minimum
abbreviation

ATPCMD TRACE

Format ATPCMD TRACE ALL
ATPCMD TRACE OFF
ATPCMD TRACE ON

where:

ON is the start of minimal ATP/HPO tracing.

ALL is the start of full ATP/HPO tracing.

OFF stops ATP/HPO tracing.

3.8 ATP/HPO Installation and Operation Publication number PAT0001.012

ATPDIR

Description Performs an on-line update of the ATP/HPO control table. The ATP/HPO table
is an optional security file to control access to the scripts held in the public or
private script libraries.

Command class C

Minimum
abbreviation

ATP

Format ATPDIR member

where:

member must be the name of a valid member residing in the
dataset referred to by the ATPDIR DD statement in the
JCL used to initialize MULTSESS/HPO. The member will
be verified for syntax before any update is attempted.

Chapter 3 - MULTSESS/HPO ATP commands 3.9

ATPVAR

Description Defines, deletes, amends or displays the value of ATP/HPO user variables.
User variables may be included in an ATP/HPO script to vary the run time
operation of a script. For example a single general purpose script may initiate
a session to a menu driven application, with the actual menu selections being
driven by variables. Up to twenty variables may be set by each user.

Command class G

Minimum
abbreviation

ATPV

Format ATPVAR SET &var value
ATPVAR DELETE &var
ATPVAR DELETE *
ATPVAR QUERY &var
ATPVAR QUERY *

where:

&var is the name of an ATP/HPO variable.

value is the value to be assigned to the variable.

* indicates all ATP/HPO variables.

Note Any of the system variables, for example, &SYSTIME, &SYSDATE, may be used
as part of value and will be resolved before being passed to the ATP/HPO.

3.10 ATP/HPO Installation and Operation Publication number PAT0001.012

RUN

Description The RUN command is used to initiate an ATP/HPO script on an already
established session.

Command class G

Minimum
abbreviation

RUN

Format RUN script alias
RUN script alias trace-level
RUN script alias RECON
RUN script alias RECON trace-level

where:

script is the name of the script to be invoked.

alias is the alias name of the session on which to run the script.

RECON indicates that you wish to be immediately switched into
the named session. If omitted, you will remain in
MULTSESS mode. The script will continue execution in
the background, while you are free to continue with other
work. You may reconnect to the application at a later
time to view the results of the script.

trace-level during script development, you may wish to trace the
execution of your script. This option is available
irrespective of the status of the MULTSESS/HPO and
ATP/HPO application trace options. Use of this operand
will result in trace records being written to the ATP/HPO
LOG file. Three trace levels are available as shown below.
The values shown are cumulative. To select more than
one option, specify the sum of their individual values:

1. All data received by ATP/HPO from an
application will be printed in HEX and EBCDIC.

2. All data sent by ATP/HPO on behalf of the
terminal will be printed in HEX and EBCDIC.

4. The statement number of the script currently
being executed and the total number of
statements executed so far will be printed. The
statement number is relative to the start of the
script (including comment cards).

Chapter 3 - MULTSESS/HPO ATP commands 3.11

TERMRUN

Description The TERMRUN command is used to unconditionally terminate a script running
on an application session.

Command class G

Minimum
abbreviation

TERMR

Format TERMRUN alias

where:

alias is the alias of the session on which the script is running.

Note: At termination time ATP/HPO will return the relative statement number that
was to be executed next and the screen image produced so far. The
application session will remain active. You may reconnect to the session to
view the screen image produced by ATP/HPO and continue application
processing from that point.

The information resulting from this command will be useful if an ATP/HPO
script is suspected of hanging.

3.12 ATP/HPO Installation and Operation Publication number PAT0001.012

This page intentionally left blank

Chapter 4 - ATP/HPO language statements 4.1

Chapter 4 - ATP/HPO language statements

4This is the autonumber for the chapter - hide with a white rectangle.

Writing scripts

This section describes all language statements that are available when writing scripts
for ATP/HPO.

Syntax rules

1. Statements are free format and can start in any column.

2. Operands must be separated from commands and each other by one or more
blanks.

3. Commands may be specified in uppercase or lowercase.

4. Maximum statement length (i.e. the maximum LRECL of a script dataset) is 1024
bytes.

5. Continuation statements are not supported.

Other rules

1. Every script must contain at least one END statement.

2. The following statements cannot be the next-to-last statement:

IF

JUMPIF

WHILE

UNTIL

3. A build error will occur if a script contains non-executable statements. For
example, an unconditional GOTO must be followed by a LABEL statement.

4. A WHILE or UNTIL statement must be followed by one of the following:

WAIT

LOCK

PFKEY

PAKEY

ENTER

CLEAR

5. The last statement in a script must be either an END or a GOTO statement.

6. Comment statements are ignored when assessing all language rules. For example,
a JUMPIF statement may be immediately followed by a comment, with the
statement to be ‘jumped’ following the comment.

4.2 ATP/HPO Installation and Operation Publication number PAT0001.012

ATP language statements

statement parameter description

* text comment statement

CLEAR simulates CLEAR key

CURSOR row,col explicit position cursor

DATA ‘text’ simulates user typing

DOWN-CURSOR number moves cursor down screen

END number returns to caller

ENTER simulates ENTER key

ERASE-EOF simulates ERASE-EOF key

GOTO label branches to script label

IF data, data tests screen data

JUMPIF data, data tests data and branch

LABEL labelname ‘GOTO’ point

LEFT-CURSOR number moves cursor left

LOCK awaits next outbound unlock keyboard

LOG ‘datastring’ outputs a message to the ATP log

MSG n ‘datastring’ passes data to MULTSESS

NON-SDLC-GOTO label branches to script label - only if non-SDLC session

NON-SDLC-WAIT awaits next outbound send - only if non-SDLC session

PAKEY number simulates PA key

PFKEY number simulates PF key

RIGHT-CURSOR number moves cursor right

SDLC-GOTO label branches to script label - only if SDLC session

SDLC-WAIT awaits next EB or CD - only if SDLC session

UNTIL data, data tests screen data

UP-CURSOR number moves cursor up screen

VAR varname inserts data from variable

WAIT awaits outbound send, EB or CD - all session types

WHILE data, data test screen data

Chapter 4 - ATP/HPO language statements 4.3

*

Description

The asterisk (*) allows comments to be included in
scripts as in-line documentation.

Comment statements are stripped out as scripts
are loaded into storage and so do not consume
script area storage and may be ignored when
assessing script structure rules. They count,
however, when script statement numbers are
reported.

Minimum abbreviation

*

Format

* text

where:

text

can be any characters.

CLEAR

Description

This statement simulates the keyboard <Clear>
key.

The <Clear> key aid byte to be sent to the
application and the in-core screen buffer are
cleared to nulls.

The reply mode is set to the default (field).

If the session is capable of primary and alternate
screen sizes, primary mode will be entered.

The cursor is moved to buffer offset 0.

If the session is capable of partitioning, implicit
partition mode will be entered.

Execution of the script is suspended until the
keyboard is unlocked again by the application.

Minimum abbreviation

CLEAR

Format

CLEAR

4.4 ATP/HPO Installation and Operation Publication number PAT0001.012

CURSOR

Description

This statement causes the CURSOR to be
positioned at an explicit location in the screen
buffer.

Minimum abbreviation

CURSOR

Format

CURSOR row,col

where:

row

is the row where the cursor is to be placed.

col

is the column where the cursor is to be
placed.

Example

logically places the cursor at row 16, column 19.

Possible errors

Cursor position specified is not within the current
screen size.

Script terminates with error code 2.

DATA

Description

This statement simulates the user typing data.
The specified datastring is inserted into the
screen buffer at the current cursor location.

Minimum abbreviation

DATA

Format

DATA ‘datastring’

where:

datastring

is a data string of less than 256 characters. It
must be enclosed within quotes, and may
contain any character. If a quote is required
as part of the string, two quotes must be
specified. The enclosing quotes are removed
when forming the resultant value. The data
can be any character equal to or greater than
X’40’ or X’00’.

Example

Note

Data will be inserted in a similar manner to a real
keyboard. After each byte is inserted, the cursor
will be moved one position to the right. If an
attribute is encountered, this will be jumped and
autoskip will take effect. At the right hand side of
the screen, further input will be entered on the
row below. At the bottom of the screen, further
input will be entered on the top row.

Possible errors

Attempting to insert data into a protected field.

Script terminates with error code 4.

CURSOR 16,19

DATA ‘this is a data string’
DATA ‘the quote symbol “ can be used’

Chapter 4 - ATP/HPO language statements 4.5

DOWN-CURSOR

Description

This statement moves the cursor down the screen
buffer the number of rows specified.

Minimum abbreviation

DOWN-CURSOR

Format

DOWN-CURSOR number

where:

number

specifies the number of rows to be moved.

Specify a numeric value less than 256.

The default is 1.

If 0 is specified, then 1 is assumed.

Example

moves the cursor down 4 rows.

Note

Cursor movement proceeds as a series of single
row moves.

If the cursor is positioned on the bottom row, a
further move will position it on the top row.

END

Description

This statement terminates script processing.

Minimum abbreviation

END

Format

END number

where:

number

is an optional user return code to be passed
back to the caller. Specify a numeric value less
than 256.

The default = 0.

This parameter is particularly useful for
reporting unexpected conditions arising
during script execution.

Example

Note

Script terminates with error code 0.

DOWN-CURSOR 4

*
* Check for executed prompt on line 1.
* Error code 16 if not found.
*
JUMPIF 1,* ‘ENTER USERID’
 END 16
*
* Type userid and end normally
*
VAR &SYSUSER
ENTER
WAIT
END

4.6 ATP/HPO Installation and Operation Publication number PAT0001.012

ENTER

Description

This statement simulates the keyboard <Enter>
key. Modified buffer contents are sent to the
application with the ENTER aid byte and the
current cursor address.

Script processing is suspended until the
application ‘unlocks’ the keyboard.

For an SDLC session, this will be when EB or CD
(end-bracket or change-direction) is received from
the application.

For a non-SDLC session, this will be the next
outbound send with the ‘unlock keyboard’ bit set.

Minimum abbreviation

ENTER

Format

ENTER

ERASE-EOF

Description

This statement simulates the keyboard
<Erase-EOF> key. The current field is erased from
the current cursor location to the next attribute
character. The cursor location is unaltered.

Minimum abbreviation

ERASE-EOF

Format

ERASE-EOF

Possible errors

Current cursor location in protected field.

Script terminates with error code 2.

Chapter 4 - ATP/HPO language statements 4.7

GOTO

Description

This statement is used to branch to the specified
LABEL statement within the script.

Minimum abbreviation

GOTO label

Format

GOTO label

where:

label

is the label name specified on a LABEL
statement within the same script. The names
specified on the GOTO and LABEL must match
exactly, that is same length, uppercase and
lowercase letters, for the label to be found.

Example

Notes

The label to be branched to may occur either
before or after the GOTO statement, that is
forward and backward branching is supported.

If the label name occurs on more than one LABEL
statement in the script, the GOTO will always
branch to the first occurrence of the label name.

Possible errors

GOTO label cannot be found in the script.

Script terminates with error code 5.

IF

Description

The data represented by the first operand is
tested against the data represented by the second
operand. If the comparison tests TRUE, the
statement following the IF is executed. If the
comparison tests FALSE, the statement following
the IF is skipped.

Minimum abbreviation

IF

Format

IF (row,col) (‘datastring’)
(‘datastring’) (variable)
(variable)

where:

row
is the row on which datastring must start for
the test to be satisfied.

col
is the column in which datastring must start for
the test to be satisfied. If 0 or * is specified,
the data may start in any column. Specifying
, indicates that the data may be present
anywhere on the screen.

datastring
is data to be tested, up to 255 bytes in length,
and may contain characters equal to or greater
than X’40’. It must be enclosed within quotes.
If a quote is required as part of the data, two
quotes must be specified. Enclosing quotes
are removed before making the comparison.

variable
is the name of a variable whose contents are
to be tested.

continued

GOTO ENTER-the-USERID

LABEL ENTER-the-USERID

4.8 ATP/HPO Installation and Operation Publication number PAT0001.012

IF - continued

Example

Notes

The data entered is compared exactly as specified,
i.e. uppercase and lowercase letters matching
exactly with the following exceptions:

if the NULL=BLANK startup option is
specified, nulls (X’00’) in the screen buffer are
treated as blanks when comparing with the
specified datastring.

if the ATTRIBUTE=BLANK startup option is
specified, attribute bytes in the screen buffer
are treated as blanks when comparing with the
specified datastring.

The IF statement implements the logical NOT of
the JUMPIF statement, that is the JUMPIF test is
identical to the IF test, but the TRUE and FALSE
meanings are reversed.

Possible errors

Cursor position specified is not within the current
screen buffer.

Script terminates with error code 2.

JUMPIF

Description

The data represented by the first operand is
tested against the data represented by the second
operand. If the comparison tests TRUE, the
statement after the JUMPIF is skipped. If the
comparison tests FALSE, the statement after the
JUMPIF is executed.

Minimum abbreviation

JUMPIF

Format

JUMPIF (row,col) (‘datastring‘)
(‘datastring’) (variable)
(variable)

where:

row
is the row on which datastring must start for
the test to be satisfied. If 0 or * is specified,
the data may start on any row.

col
is the column in which datastring must start for
the test to be satisfied. If 0 or * is specified,
the data may start in any column. Specifying
, indicates that the data may be present
anywhere on the screen.

datastring
is data to be tested, up to 255 bytes in length,
and may contain any characters equal to or
greater than X’40’. It must be enclosed within
quotes. If a quote is required as part of the
data, two quotes must be specified. The
enclosing quotes are removed before making
the comparison.

variable
is the name of a variable whose contents are
to be tested.

continued

*
* Test for production or test IMS system
* (Take GOTO branch if the IF test is true)

IF 2,20 ‘PRODUCTION IMS SYSTEM’
 GOTO LOGON-PROD-IMS
*
*Code for test system logon
*
LABEL LOGON-TEST-IMS
WAIT
END
*
* Code for production system logon
*
LABEL LODON-PROD-IMS
WAIT
END

Chapter 4 - ATP/HPO language statements 4.9

JUMPIF - continued

Example

Notes

The data entered is compared exactly as specified,
i.e. uppercase and lowercase letters must match
exactly with the following exceptions:

if the NULL=BLANK startup option is
specified, nulls (X’00’) in the screen buffer are
treated as blanks when comparing with the
specified datastring.

if the ATTRIBUTE=BLANK startup option is
specified, attribute bytes in the screen buffer
are treated as blanks when comparing with the
specified datastring.

The JUMPIF statement implements the ‘logical
NOT’ of the IF statement, that is the IF test is
identical to the JUMPIF test, but the TRUE and
FALSE meanings are reversed.

Possible errors

Cursor position specified is not within the current
screen buffer.

Script terminates with error code 2.

LABEL

Description

This statement is used to indicate a position that
can be branched to from a GOTO statement.

Minimum abbreviation

LABEL

Format

LABEL label-name

where:

label-name

is the name of the label, less than 256
characters with no imbedded blanks.

The label must exactly match the name
specified on the GOTO for it to be found, i.e.
matching uppercase and lowercase letters.

Example

Note

If a LABEL is defined more than once, the first
occurrence will be found by a GOTO.

* Test for production or test IMS system
* (Jump over the GOTO if JUMPIF test is true)
*
JUMPIF 2,20 ‘PRODUCTION IMS SYSTEM’
 GOTO LOGON-TEST-IMS
*
* Code for production system logon
*
LABEL LOGON-PROD-IMS
WAI
END
*
* Code for test system logon
*
LABEL LOGON-TEST-IMS
WAIT
END

GOTO THIS-is-a-BRANCH-point

.....................

.....................

.....................

LABEL THIS-is-a-BRANCH-point

4.10 ATP/HPO Installation and Operation Publication number PAT0001.012

LEFT-CURSOR

Description

This statement moves the cursor left along the
screen buffer the number of columns specified.

Minimum abbreviation

LEFT-CURSOR

Format

LEFT-CURSOR number

where:

number

specifies the number of screen locations to
be moved.

Specify a numeric value less than 256.

The default is 1.

If 0 is specified, then 1 is assumed.

Example

moves the cursor 16 positions to the left.

Note

 Cursor movement proceeds as a series of one
position moves. For each single position move,
the following rules apply:

• if the cursor is anywhere in the screen
buffer other than column 1, the cursor will
move to the left

• if the cursor is in row 1, column 1, the
cursor is moved to the rightmost column
of the bottom row

• if the cursor is in column 1 of any row
other than row 1, it will move to the
rightmost column of the row above

LOCK

Description

This statement causes the script to wait until the
next outbound send that unlocks the keyboard
has been received.

For SDLC sessions, this statement is no different
to the WAIT statement.

However, for non-SDLC sessions a WAIT
statement will wait for the next outbound send,
whereas a LOCK will wait for the next outbound
send that unlocks the keyboard.

Minimum abbreviation

LOCK

Format

LOCK

LEFT-CURSOR 16

Chapter 4 - ATP/HPO language statements 4.11

LOG

Description

This statement is used to output a message on
the ATP log.

Minimum abbreviation

LOG

Format

LOG ‘datastring’

where:

datastring

is the data to be output on the ATP log up to
114 bytes in length.

Example

MSG

Description

This statement is used to pass data to
MULTSESS/HPO. The processing performed by
MULTSESS/ HPO depends on the level entered
for the command (which can be 0 to 5 as
described below), and whether the function
specified by this level is supported by
MULTSESS/HPO at the time of invocation.

Minimum abbreviation

MSG

Format

MSG n ‘datastring’

where:

n

indicates what MULTSESS/HPO will do with
the data. This is a number between 0 and 5 as
follows:

0 - write data to the
MULTSESS log

1 - pass data to user (display
on the screen)

2 - write data out as a WTO

3 - execute data as a
MULTSESS command

4 - (reserved for future use)

5 - execute data as a
MULTSESS command after
script terminates

datastring

is the data to be passed to MULTSESS/HPO
for further processing and can be up to 255
bytes in length.

Example

LOG ‘call I executed’

......

......

......

......

MSG 0 ‘SCRIPT FOR USER TSG1 COMPLETED’

4.12 ATP/HPO Installation and Operation Publication number PAT0001.012

NON-SDLC-GOTO

Description

This statement is used to branch to the specified
LABEL statement within the script, only if the
script is running on a non-SDLC session.

If a script containing a NON-SDLC-GOTO
statement is run on an SDLC session, it will be
ignored. This enables a single script to be shared
for use on behalf of users of SDLC and non-SDLC
terminals when in session with applications which
are sensitive to session protocol.

In all other respects, this statement is the same as
the GOTO statement.

Minimum abbreviation

NON-SDLC-GOTO label

Format

NON-SDLC-GOTO label

where:

label

is the label name specified on a LABEL
statement within the same script. The names
specified on the GOTO and LABEL must match
exactly, i.e. same length, uppercase and
lowercase letters, for the label to be found.

NON-SDLC-WAIT

Description

After data has been sent inbound on a non-SDLC
session, for example by an ENTER or PFKEY
statement, the ATP/HPO script is suspended until
the application sends data with the ‘unlock
keyboard’ bit set.

The NON-SDLC-WAIT statement causes the script,
if it is running on a non-SDLC session, to be
suspended even though the keyboard has been
unlocked by the application.

The NON-SDLC-WAIT will last until the next
outbound send from the application.

If a script containing a NON-SDLC-WAIT
statement is run on an SDLC session, it will be
ignored. This enables a single script to be shared
for use on behalf of users of SDLC and non-SDLC
terminals when in session with applications which
are sensitive to session protocol.

Minimum abbreviation

NON-SDLC-WAIT

Format

NON-SDLC-WAIT

Related statements

SDLC-WAIT
WAIT
LOCK

Chapter 4 - ATP/HPO language statements 4.13

PAKEY

Description

This statement simulates the Program Attention
(PA) keys on the terminal. The appropriate PA key
aid byte is sent to the application.

Note that, as with a real terminal, the PAKEY
statement causes a short read. Modified data is
NOT sent to the application as part of the
datastream.

Script processing is suspended until the
application ‘unlocks’ the keyboard. For an SDLC
session, this will be when EB or CD (end-bracket or
change-direction) is received from the application.
For a non-SDLC session, this will be the next
outbound send with the unlock keyboard bit set.

Minimum abbreviation

PAKEY

Format

PAKEY number

where:

number

is the number of the PA key to be simulated, in
the range 1 to 3.

Example

sends <PAK2> to the application.

PFKEY

Description

This statement simulates the Program Function
(PF) keys on the terminal. Modified buffer
contents are sent to the application with the
appropriate PF key aid byte and the current cursor
address.

Script processing is suspended until the
application unlocks the keyboard. For an SDLC
session, this will be when EB or CD (end-bracket or
change-direction) is received from the application.
For a non-SDLC session, this will be the next
outbound send with the unlock keyboard bit set.

Minimum abbreviation

PFKEY

Format

PFKEY number

where:

number

is the number of the PF key to be simulated, in
the range 1 to 24.

Example

sends <PFK16> to the application.

PAKEY 2

PFKEY 16

4.14 ATP/HPO Installation and Operation Publication number PAT0001.012

RIGHT-CURSOR

Description

This statement moves the cursor to the right along
the screen buffer by the number of columns
specified.

Minimum abbreviation

RIGHT-CURSOR

Format

RIGHT-CURSOR number

where:

number

specifies the number of screen locations to be
moved. Specify a numeric value less than 256.

The default is 1

If 0 is specified, then 1 is assumed.

Example

moves cursor 14 positions to the right.

Note

Cursor movement proceeds as a series of one
position moves. For each single position move, the
following rules apply:

• if the cursor is anywhere in the screen
buffer other than the rightmost column, the
cursor is moved to the right

• if the cursor is in the rightmost column of
the bottom row, it is moved to row 1
column 1

• if the cursor is in the rightmost column of
any row other than the bottom row, it is
moved to column 1 of the row below.

SDLC-GOTO

Description

This statement is used to branch to the specified
LABEL statement within the script, only if the
script is running on an SDLC session.

If a script containing an SDLC-GOTO statement is
run on a non-SDLC session, it will be ignored. This
enables a single script to be shared for use on
behalf of users of SDLC and non-SDLC terminals
when in session with applications which are
sensitive to session protocol.

In all other respects, this statement is the same as
the GOTO statement.

Minimum abbreviation

SDLC-GOTO

Format

SDLC-GOTO label

where:

label

is the name of the label, less than 256
characters with no imbedded blanks.

The label must exactly match the name
specified on the GOTO for it to be found, i.e.
matching uppercase and lowercase letters.

RIGHT-CURSOR 14

Chapter 4 - ATP/HPO language statements 4.15

SDLC-WAIT

Description

After data has been sent inbound on an SDLC
session, for example by an ENTER or PFKEY
statement, the ATP/HPO script is suspended until
the keyboard is unlocked by a change-direction
(CD) or end-bracket (EB) received from the
application.

The SDLC-WAIT statement causes the script, if it is
running on an SDLC session, to be suspended
even though the keyboard has been unlocked by
the application.

The SDLC-WAIT will last until the next EB or CD is
received from the application.

If a script containing an SDLC-WAIT statement is
run on a non-SDLC session, it will be ignored. This
enables a single script to be shared for use on
behalf of users of SDLC and non-SDLC terminals
when in session with applications which are
sensitive to session protocol.

Minimum abbreviation

TERMC

Format

SDLC-WAIT

Related statements

NON-SDLC-WAIT
WAIT
LOCK

UNTIL

Description

This statement causes ATP/HPO to continually
execute the single statement immediately
following the UNTIL statement, until the data
represented by the two operands match.

Minimum abbreviation

UNTIL

Format

UNTIL (row,col) (‘datastring’)
(‘datastring’) (variable)
(variable)

where:

row
is the row on which datastring must start for
the test to be satisfied.

If 0 or * is specified, the data may start on any
row.

col
is the column in which datastring must start for
the test to be satisfied.

If 0 or * is specified, the data may start in any
column.

Specifying *,* indicates that the data may be
present anywhere on the screen.

datastring
is data to be tested, up to 255 bytes in length,
and may contain any characters equal to or
greater than X’40’.

It must be enclosed within quotes. If a quote is
required as part of the data, two quotes must
be specified. The enclosing quotes are
removed before making the comparison.

variable
is the name of a variable whose contents are
to be tested.

continued

4.16 ATP/HPO Installation and Operation Publication number PAT0001.012

UNTIL - continued

Example

Notes

The data entered is compared exactly as specified
(i.e. uppercase and lowercase letters must match
exactly), with the following exceptions:

if the NULL=BLANK startup option is
specified, nulls (X’00’) in the screen buffer are
treated as blanks when comparing with the
specified datastring.

if the ATTRIBUTE=BLANK startup option is
specified, attribute bytes in the screen buffer
are treated as blanks when comparing with the
specified datastring.

Possible errors

Cursor position specified is not within the current
screen buffer.

Script terminates with error code 2.

UP-CURSOR

Description

This statement moves the cursor up the screen
buffer by the number of rows specified.

Minimum abbreviation

UP-CURSOR

Format

UP-CURSOR number

where:

number

specifies the number of rows to be moved.

Specify a numeric value less than 256.

The default is 1.

If 0 is specified, 1 is assumed.

Example

moves the cursor up 6 rows.

Note

Cursor movement proceeds as a series of single
row moves. If the cursor is positioned on the top
row, a further move will position it on the bottom
row.

*
* Logoff from TSO/ISPF
*Press PFK3 until out of ISPF and the TSO
*’READY’ message appears (column 2 of any row)
*
UNTIL *,2 ‘READY’
PFKEY 3
DATA ‘LOGOFF’
ENTER
END

UP-CURSOR 6

Chapter 4 - ATP/HPO language statements 4.17

VAR

Description

This statement will insert the current value of the
variable in the screen buffer at the current cursor
position.

Minimum abbreviation

VAR

Format

VAR varname

where:

varname

is the name of the variable.

The following variables are automatically made
available for use in any ATP/HPO script:

&SYSUSER - userid,

&SYSPASS - password,

&SYSTERM -the real terminal nodename,

&SYSUSER, &SYSPASS and &SYSTERM must be
typed in uppercase characters.

Note

If the specified variable is not currently defined,
the statement is ignored. Data will be inserted in a
similar manner to a real keyboard. After insertion
of each byte, the cursor will be moved one
position to the right.

If an attribute is encountered, this will be jumped
and autoskip will take effect. On the right hand
side of the screen, further input will be entered on
the row below. At the bottom of the screen,
further input will be entered on the top row.

Possible errors

Attempting to insert data into a protected field.

Script will terminate with an error code 4.

WAIT

Description

The WAIT statement is used to suspend an ATP/
HPO script and can be specified with or without a
parameter of nnnn to limit the length of the wait.

If specified without the nnnn parameter, the WAIT
statement acts in the following way:

after data has been sent inbound to the
application, for example by an ENTER or
PFKEY statement, the ATP/HPO script is
suspended until:

• for an SDLC session, an end-bracket (EB)
or change direction (CD) is received

• for a non-SDLC session, a keyboard
unlock is received.

Note: Some applications, notably TSO at logon
time, can unlock the keyboard before all
outbound data has been delivered to
the terminal. In this case the WAIT
statement causes the script to be
suspended even though the keyboard
has been unlocked by the application.

Therefore the WAIT will last until:

• for an SDLC session, the next EB
or CD is received

• for a non-SDLC session, the next
outbound send.

If specified with the nnnn parameter, the WAIT
times out if either the keyboard is unlocked or the
time specified by nnnn has been exceeded. This
prevents a script waiting for an event that never
happens.

Minimum abbreviation

WAIT

Format

WAIT [nnnn]

where

nnnn is the time limit for the WAIT
command, in tenths of a second, up to
a maximum of 9999 (999.9 seconds).

continued

4.18 ATP/HPO Installation and Operation Publication number PAT0001.012

WAIT - continued

Examples
WAIT is typically used in conjunction with a
conditional test statement, such as UNTIL, IF etc.
The following example illustrates the use of
UNTIL/WAIT during a logon to TSO, to suspend
entry of the userid until TSO is ready for it.

Note: Use of UNTIL with the WAIT nnnn
statement will not timeout.

The next example illustrates the use of the WAIT
command using the timeout parameter.

If the required data is already on the screen when
the script starts, the password is entered
immediately.
If the words ‘Enter Password’ do not appear in line
1, column 2 after 10 seconds (2 x 50 tenths of a
second), the script displays the message ‘Script
failed user intervention reqd’.
Note: The script allows the screen to be

unlocked or timed out twice so it can
check if the Enter Password prompt has
arrived after some unexpected data. The
unexpected data can therefore be
ignored. This allows a similar function to
the UNTIL command but with a timeout
option.
To wait on a non-SDLC session for the
next send with keyboard unlock, see the
LOCK command.

Related statements
SDLC-WAIT
NON-SDLC-WAIT
LOCK

WHILE

Description

This statement causes ATP/HPO to continually
process the single statement immediately
following the WHILE statement, as long as the
data represented by the two operands match.

When the condition no longer tests true, the
statement after the WHILE is skipped and script
execution continues with the next script
statement.

Minimum abbreviation

WHILE

Format

WHILE (row,col) (‘datastring’)
(‘datastring’) (variable)
(variable)

where:

row
is the row on which datastring must start for
the test to be satisfied.

If 0 or * is specified, the data may start on any
row.

col
is the column in which datastring must start for
the test to be satisfied.

If 0 or * is specified, the data may start in any
column. Specifying *,* indicates that the data
may be present anywhere on the screen.

datastring
is data to be tested, up to 255 bytes in length,
and may contain any characters equal to or
greater than X’40’. It must be enclosed within
quotes. If a quote is required as part of the
data, two quotes must be specified. The
enclosing quotes are removed before making
the comparison.

variable
is the name of a variable whose contents are
to be tested.

continued

*
* WAIT FOR PROMPT FOR USERID ON LINE 1
*
UNTIL 1,* ‘ENTER USERID’
 WAIT
*
* ‘TYPE’ USERID AND PRESS ENTER
*
VAR &SYSUSER
ENTER

IF 1,2 ‘Enter Password’
 GOTO enter-pass
WAIT 50
IF 1,2 ‘Enter Password’
 GOTO enter-pass
WAIT 50
IF 1,2 ‘Enter Password’
 GOTO enter-pass
MSG 1 ‘Script failed user intervention reqd’
GOTO all-done
VAR &SYSPASS
ENTER
LABEL all-done
END

Chapter 4 - ATP/HPO language statements 4.19

WHILE - continued

Example

Note

The data entered is compared exactly as specified,
i.e. uppercase and lowercase letters must match,
with the following exceptions:

if the NULL=BLANK startup option is
specified, nulls (X’00’) in the screen buffer are
treated as blanks when comparing with the
specified datastring.

if the ATTRIBUTE=BLANK startup option is
specified, attribute bytes in the screen buffer
are treated as blanks when comparing with the
specified datastring.

Possible errors

Cursor position specified is not within the current
screen buffer.

Script terminates with error code 2.

*
* If TSO is displaying the three stars (***)
* prompt in column 2 of any line, press ENTER
*
WHILE *,2 ‘***’
ENTER

*
* Prompt (***) cleared so continue
*
DATA ‘ISPF 3.7’
ENTER
WAIT
END

4.20 ATP/HPO Installation and Operation Publication number PAT0001.012

Restricted keyboard functions in version 1.4

The following keyboard functions are not supported:

forward tab
backward tab
home
down tab
delete
insert

The command

ERASE ALL UNPROTECTED

is not supported.

If the terminal supports partitioning, only single partitions with an id of 1 are
supported.

Chapter 5 - ATP/HPO messages 5.1

Chapter 5 - ATP/HPO messages

5This is the autonumber for the chapter - hide with a white rectangle.

Error reporting

Errors occurring within ATP/HPO itself, disruptions and errors on the primary session
between ATP/HPO and the MULTSESS/HPO address space (for which ATP/HPO is
providing scripting services), or errors detected within scripts active on individual
application sessions, may be reported in one or more of the following ways:

1. Messages to the system operator console, written using SVC 35 (WTO)
with route codes 2 and 11. The messages and their meanings are
described in Messages to the system operator on page 5.2.

2. If ATP/HPO encounters a critical error condition from which it is unable to
recover, it will abnormally terminate with an abend code 306.

3. ATP/HPO writes a log of events to the dataset, or SYSOUT file, pointed to
by the ATP/HPO LOG DD statement.

Messages include routine, non-error, events, error conditions and shutdown
statistics, and are described in ATP/HPO log messages on page 5.4.

Error codes
ATP/HPO is a slave application providing script services to other calling applications.

Errors occurring either on the session between ATP/HPO and its caller, or as a failure
in a script request running on behalf of a user of the calling application, will be
reported back to the caller as an error code.

The caller will normally interpret the failure code and use it to display or log a
message of its own which describes the error. The types of error which can occur are:

1. The requested script cannot be started, for instance the script cannot be
found or contains a syntax error. These codes are described in Script load
error codes on page 5.10.

2. The script abnormally terminates, for instance data is entered into a
protected field. These error codes are described in Script termination
codes on page 5.12.

3. ATP/HPO detects a protocol error on the session between itself and a
calling application and terminates the session. No further script requests
from the caller can be processed. These codes should never occur in
normal use but are described for completeness in ATP/HPO termination
error codes on page 5.13.

5.2 ATP/HPO Installation and Operation Publication number PAT0001.012

Messages to the system operator

message description

ATINIT ATPLOG DD STATEMENT NOT CODED
An attempt was made to initialize ATP/HPO without the ATPLOG DD statement.

ATINIT UNABLE TO LOAD MODULE ATCONS
ATP/HPO was unable to load module ATCONS at initialization time. Verify the
installation procedure and ensure that the module exists in the steplib library.

ATINIT **WARNING** YOUR ATP LICENSE EXPIRES WITHIN 14 DAYS
Your trial period expires soon. Contact your local marketing representative.

ATINIT A.T.P. NOT LICENSED FOR THIS CPU
This message indicates that the trial/licence period for this copy of ATP/HPO has
expired. This message is issued 5 times and is non-rollable.
If this message occurs during a trial period, contact your local support office for
an extension. If this message occurs outside a trial period, contact your local
support office to find out why the licence has expired.

ATINIT WAITING FOR ACB ACTIVATION - COMMAND IGNORED
ATP/HPO is waiting for activation in its main ACB. The only MVS console
command valid at this time is a STOP (P) command.

ATPOPER INVALID COMMAND
A Modify (F) command has been entered for ATP/HPO. The command you have
issued is not in the ATP command list. Correct your command syntax and reissue
the command.

ATPOPER ABEND - IN PROGRESS
‘F ATP,ABEND’ has been accepted. ATP/HPO is in the process of shutting down
abnormally.

ATPOPER ABEND - INVALID PCB NAME
‘F ATP,ABEND userid’ was entered, but ATP/HPO was unable to locate a PCB for
the specified userid. The command is ignored.

ATPOPER TRACE - ON
‘F ATP,TRACE ON’ has been accepted. Trace data will be written to the ATPLOG
file.

ATPOPER TRACE - OFF
‘F ATP,TRACE OFF’ has been accepted. ATP/HPO tracing has been halted.

ATPOPER TRACE - INVALID OPTION
‘F ATP,TRACE’ was entered but the option you have specified is invalid.

ATPOPER DISPLAY - INVALID OPTION
‘F ATP,DISPLAY’ was entered with an invalid option. The command is ignored.

Chapter 5 - ATP/HPO messages 5.3

ATPOPER DISPLAY - GETMAIN = value
In response to a DISPLAY command, ATP/HPO reports the amount of storage
getmained for working storage.

ATPOPER DISPLAY - MODULES = value
In response to a DISPLAY command, ATP/HPO displays the amount of virtual
storage used for ATP/HPO program modules.

ATPOPER DISPLAY - SCRIPTS = value
In response to a DISPLAY command, ATP/HPO displays the amount of virtual
storage occupied by scripts.

ATPOPER RESET - SCRIPT NOT FOUND
‘F ATP,RESET’ was entered to delete an in-storage copy of a script, but the
specified script is not currently in storage.

ATPOPER RESET - COMPLETED
‘F ATP,RESET’ has been completed. The script library combination entered on the
command has been marked for deletion and will be reloaded from disk at the
next reference. The script was not a permanently loaded script.

ATPOPER RESET - COMPLETED (PERMANENT)
‘F ATP,RESET’ has been completed. The script/library combination entered on
the command has been marked for deletion and will be reloaded from disk at the
next reference. The script was a permanently loaded script.

ATPOPER RESET - INVALID SCRIPT NAME
‘F ATP,RESET’ was issued but an invalid script name was specified. The command
is ignored.

ATP RESET - INVALID LIBRARY NAME
‘F ATP,RESET’ was issued but an invalid library name was specified. The command
is ignored.

ATP ATP INITIALIZATION COMPLETE
 ATP is initialized and is waiting for work.

ATP ATP TERMINATION COMPLETE
ATP has terminated normally as a result of a SHUTDOWN command.

ATTIMER ABEND
The ATPLOG writer module has abended for some reason. ATP continues to
function normally but no log will be produced from now on. ATP should be
restarted at the earliest opportunity.

ATP INITIALIZATION FAILURE
ATP/HPO initialization has failed, a separate message should explain why
ATP/HPO will terminate.

ATP SETLOGON FAILURE
SETLOGON has failed, ATP/HPO will terminate.

ATP UNKNOWN ECB POSTED
A mainline has been posted, ATP/HPO will terminate.

5.4 ATP/HPO Installation and Operation Publication number PAT0001.012

ATP/HPO log messages

message description

ATESTAE userid - alias - ========= ATP ABEND ========
ATP/HPO has detected an abend in a mainline module. Other messages will follow
describing the type and location of the abend.

ATESTAE ABEND OCCURRED AT address (OFFSET offset) IN MODULE module CODE
Snnn Unnn
The location of the abend within an ATP/HPO mainline module is reported.

ATESTAE CALLED FROM address (OFFSET offset) IN MODULE module
The location from which the module reported in the previous message was called
is reported.

ATESTAE userid - alias - ====== ATESTAE COMPLETE =======
ATP/HPO has completed reporting a mainline code abend and is in the process of
shutting down.

ATESTAI userid - alias - ======= SUBTASK ABEND ========
ATP/HPO has detected an abend condition during execution of a subtask.
Subtasks are used by ATP/HPO to load user scripts. Other messages will follow
describing the location and type of abend.

ATESTAI SDWA
The SDWA presented to the ESTAE exit by MVS is printed in both hexadecimal
and EBCDIC.

ATESTAI SCB
The main ATP/HPO System Control Block is printed in both hexadecimal and
EBCDIC.

ATESTAI STB
The Subtask Control Block representing the subtask that has abended is printed in
both hexadecimal and EBCDIC.

ATESTAI STB-ICB
The Instruction Control Block representing the script being loaded by the failing
subtask is printed in both hexadecimal and EBCDIC.

ATESTAI STB-PCB
The Process Control Block representing each user awaiting the loading of the
script is printed in both hexadecimal and EBCDIC.

ATESTAI ABEND OCCURRED AT address (OFFSET offset) IN MODULE module CODE
Snnn Unnn
The location of the abend within an ATP/HPO subtask is reported.

ATESTAI CALLED FROM module (OFFSET offset) IN MODULE module-name
The location from which the module reported in the previous message was called
is reported.

Chapter 5 - ATP/HPO messages 5.5

ATESTAI userid - alias - === SUBTASK RECOVERY INVOKED ===
ATP/HPO has completed reporting the subtask abend and the subtask will be re-
instated to process further script load requests. ATP/HPO continues normal
processing.
Note
If the script error is corrected, the script will have to be reset before ATP/HPO will
load this script again.

ATINIT FIX TABLE
ATP/HPO is initializing and is reporting the fixes applied to the version of
ATP/HPO that has been started. The fix table will follow this message and reports
each possible fix as either applied (denoted by an ‘X’) or not yet applied (denoted
by an ‘O’).

ATINIT ERROR LOADING MODULE module
module could not be loaded during ATP/HPO initialization. ATP/HPO is
terminating.

ATINIT *** invalid card ***
ATP/HPO is reporting an invalid startup statement. The text of the message is
replaced with the contents of the invalid record.

ATINIT INVALID STARTUP PARAMETER CODED
ATP/HPO has read a control card which is invalid. The card in error will have been
printed in the log previous to this.

ATINIT WARNING - ADDRESS SPACE RUNNING SWAPPABLE
ATP/HPO has detected that it is not running authorized and cannot make itself
non-swappable.

ATINIT ADDRESS SPACE MARKED NON-SWAPPABLE
ATP/HPO has detected that it is running authorized and has made itself non-
swappable.

ATINIT ERROR DURING OPEN OF ACB - ERROR CODE = X’nn’.
ATP/HPO has failed to open its ACB for some reason. The error code returned by
VTAM is reported in the message. For non-critical errors, ATP/HPO will wait and
retry the open every 30 seconds. For details of the error code reported, refer to
the description of the OPEN macro in the VTAM Programming Guide.

ATINIT INITIALIZATION COMPLETE
ATP/HPO has successfully initialized and is ready to accept script requests from
calling applications.

ATINIT ATP ABENDING DUE TO ABOVE ERRORS
ATP has failed to initialize and is shutting down. Previous messages will have
detailed the failures encountered.

ATINIT DATE FORMAT INCORRECT
The DATE= startup parameter has been incorrectly coded.

ATINIT PRIVATE LIBRARY DSNAME PREFIX MAY NOT EXCEED 35 CHARACTERS
The value specified for the LIBRARY-PREFIX= startup parameter contains more
than 35 characters.

5.6 ATP/HPO Installation and Operation Publication number PAT0001.012

ATINIT PRIVATE LIBRARY DSNAME SUFFIX MAY NOT EXCEED 35 CHARACTERS
The LIBRARY-SUFFIX= startup parameter has been specified containing more
than 35 characters.

ATINIT COMBINED LENGTH OF PRIVATE LIBRARY PREFIX AND SUFFIX MAY NOT
EXCEED 34 CHARACTERS.
Both the LIBRARY-PREFIX= and the LIBRARY-SUFFIX= startup parameters have
been specified and when combined they contain more than 34 characters.

ATINIT PUBLIC LIBRARY NAME SPECIFIED EXCEEDS 44 CHARACTERS.
The PUBLIC-LIBRARY= startup parameter has been specified containing more
than 44 characters.

ATINIT MAXIMUM-RUSIZE PARAMETER INVALID.
The MAXIMUM-RUSIZE= startup parameter has been incorrectly coded.

ATINIT INVALID TRACE OPTION SELECTED.
A TRACE= startup parameter, other than YES, NO or ALL, has been coded.

ATINIT MAXIMUM-SUBTASKS PARAMETER INVALID.
The MAXIMUM-SUBTASKS= startup parameter has been incorrectly coded.

ATINIT ACBNAME PARAMETER HAS NOT BEEN SPECIFIED.
The ACBNAME= startup parameter has not been coded. This parameter is
mandatory.

ATINIT PERMANENT-SCRIPT PARAMETER INVALID.
The PERMANENT-SCRIPT= startup parameter has been incorrectly coded.

ATINIT SCRIPT-STORAGE PARAMETER INVALID.
The SCRIPT-STORAGE= startup parameter has been incorrectly coded.

ATINIT ESTAE ENVIRONMENT SETUP FAILURE.
ATP/HPO has attempted to set up the ESTAE environment under which it always
runs. However, this has failed for some reason. Check that the region size is
sufficient.

ATINIT MAXIMUM-GOTOS PARAMETER INVALID
The MAXIMUM-GOTOS= startup parameter has been incorrectly coded.

ATINIT MAXIMUM-VARIABLES PARAMETER INVALID
The MAXIMUM-VARIABLES= startup parameter has been incorrectly coded.

ATINIT LOG-PAGE-LENGTH PARAMETER INVALID
The LOG-PAGE-LENGTH= startup parameter has been incorrectly coded.

ATINIT STOP/MODIFY PARAMETER INVALID
The STOP/MODIFY= startup parameter has been incorrectly coded.

ATINIT *** PASSWORD SUPPRESSED ***
The PASSWORD= startup parameter has been specified but for security reasons is
not listed on the log.

ATINIT *** CODE SUPPRESSED ***
The CODE= startup parameter has been specified but for security reasons is not
listed on the log.

Chapter 5 - ATP/HPO messages 5.7

ATP TERMINATION COMPLETE
ATP/HPO has been shutdown normally.

ATP ACB HAS BEEN CLOSED
VTAM has notified ATP/HPO that communication is no longer possible.

ATREQ09 userid - alias - caller - SCRIPT scriptname/libraryname COMPLETE AT
statement-num CODE rc
The indicated script has been terminated prematurely by the caller, for instance
by a MULTSESS/HPO user issuing a TERMRUN command. Return codes and their
meanings are described in Script termination codes on page 5.12.

ATSPROC userid - alias - caller - SCRIPT scriptname/libraryname COMPLETE AT
statement-num CODE rc
The indicated script has completed for some reason. Return codes and their
meanings are described in Script termination codes on page 5.12.

ATSTATS
ATSTATS

subtask-num - SUCCESSFUL LOADS = nnn
subtask-num - FAILING LOADS = nnn
These messages form part of the ATP/HPO shutdown statistics. ATP/HPO
reports, for each subtask allocated, the number of script loads that succeeded
and the number that failed for any reason.

ATSTATS
ATSTATS
ATSTATS
ATSTATS
ATSTATS

SCRIPT ‘name/library’ - PERMANENT = nnn -RESET=nnn
- SCRIPT SIZE = nnn
- TIMES LOADED = nnn
- INITIATIONS = nnn
- COMPLETIONS = nnn

These messages form part of ATP/HPO shutdown statistics. ATP/HPO reports
statistical information for each script loaded.

ATSTATS ATP/HPO MODULE STORAGE = nnnn BYTES
This message forms part of the ATP/HPO shutdown statistics. ATP/HPO reports
the number of bytes of storage used by the ATP/HPO modules.

ATSTATS ATP/HPO SCRIPT STORAGE = nnnn BYTES
This message forms part of the ATP/HPO shutdown statistics. ATP/HPO reports
the number of bytes of storage used by ATP/HPO for storing scripts.

ATSTATS NUMBER OF SUBTASKS QUEUED = nnnn
This message forms part of the ATP/HPO shutdown statistics. ATP/HPO reports
the number of times a script load was needed but no subtask was free to perform
the load. If the indicated value is greater than zero, you should consider
increasing the value of the MAXIMUM-SUBTASKS startup parameter.

ATSTATS
ATSTATS

caller-acbname - SCRIPTS STARTED = nnnn
caller-acbname - SCRIPTS FINISHED = nnnn
This message forms part of the ATP/HPO shutdown statistics. For each caller still
connected at the time ATP/HPO was shut down, ATP/HPO reports the number of
scripts started and the number of scripts completed.

5.8 ATP/HPO Installation and Operation Publication number PAT0001.012

ATSUBT userid -caller -SUBTASK INITIALIZATION COMPLETE
This message is issued by each subtask allocated as it successfully completes
initialization. It is now ready to load scripts when requested.

ATTERM caller-acbname TERMINATED - ERROR CODE = rc
ATP/HPO has detected that a caller has failed to observe the communication rules
between itself and ATP/HPO. The session is terminated and all active scripts are
abandoned. For more information on the error code rc refer to ATP/HPO
termination error codes on page 5.13.

ATUNBND
ATUNBND

caller-acbname - SCRIPTS STARTED = nnnn
caller-acbname - SCRIPTS FINISHED = nnnn
A calling application, for whom ATP/HPO has been providing scripting services,
has terminated its session with ATP/HPO. ATP/HPO reports the number of scripts
started and the number of scripts completed on behalf of the caller.

ATVLERAD E-LERAD-RPL-UNUSABLE.
ATP/HPO has detected that a VTAM request has failed because of an unusable
RPL. The storage area that was found to be invalid is printed after this message in
hexadecimal and EBCDIC.

ATVLOGON ATTEMPTED LOGON FROM TERMINAL luname REJECTED
A terminal has attempted to connect to ATP/HPO and was rejected. ATP/HPO
does not support terminals.

ATVNSEXI caller-acbname SESSION CLEANUP
VTAM has notified ATP/HPO that a caller, for whom ATP/HPO was providing
scripting services, is no longer available.

ATVNSEXI UNKNOWN RU RECEIVED - REPORT THIS MESSAGE
ATP/HPO has received a VTAM RU in its NSEXIT which it does not understand.
The RPL and RU are printed after this message in hexadecimal and EBCDIC.

ATVSCIP INVALID CONNECTION ATTEMPT
A caller has attempted to connect with ATP/HPO but certain protocol validation
parameters have been incorrectly specified. The connection attempt is rejected.

ATVSCIP caller-acbname BIND RECEIVED
ATP/HPO has been notified by VTAM that another application wishes to connect
with it.

ATVSCIP INBOUND RUSIZE EXCEEDS MAXIMUM
A caller has attempted to start a session with ATP/HPO. However, the RUSIZE
specified in the connection parameters exceeds the value specified in the
ATP/HPO startup parameter MAXIMUM-RUSIZE=.

ATVSCIP INBOUND RUSIZE < 128 BYTES
A caller has attempted to start a session with ATP/HPO. However, the RUSIZE
specified in the connection parameters for ATP/HPO-to-caller data flow is less
than the minimum supported value of 128 bytes. The connection request is
rejected.

ATVSCIP UNKNOWN UNBIND RECEIVED - IGNORED
VTAM has notified ATP/HPO that a caller wishes to terminate its session.
However, ATP/HPO does not know of this caller.

Chapter 5 - ATP/HPO messages 5.9

ATVSCIP caller-acbname UNBIND RECEIVED
A caller has requested ATP/HPO to terminate the session between them.

ATVSCIP OUTBOUND RUSIZE < 128 BYTES
A caller has attempted to start a session with ATP/HPO. However, RUSIZE
specified in the connection parameters for caller-to-ATP/HPO dataflow is less
than the minimum supported value of 128 bytes. The connection request is
rejected.

ATVTPEND
ATVTPEND
ATVTPEND

VTAM HALT COMMAND ISSUED
VTAM HALT QUICK OR V INACT I OR F ISSUED
VTAM HALT CANCEL ISSUED
VTAM has driven the ATP/HPO TPEND exit to tell ATP/HPO to stop
communications.

ATVXLOAD userid-alias-caller- SCRIPT ‘script/library’ LOAD SUCCESS AT statement-count
SIZE nnnn
Script alias has been successfully loaded into virtual storage to satisfy a request
from user userid. The number of (non-comment) statements and the size, in bytes,
of the script are indicated.

ATVXLOAD userid-alias-caller - SCRIPT ‘script/library’ LOAD FAILURE AT
statement-number CODE rc TYPE tc
A script load has failed. The relative number of the last statement loaded
(excluding comments) is reported along with the error code (rc) and error type
(tc). For more information on these error codes refer to Script load error codes on
page 5.10.

ATVXRECV
ATVXRECV

INVALID REQUEST-CCB.
userid - alias - INVALID REQUEST-RPL

ATP/HPO has received invalid data from a caller. The Caller Control Block (CCB),
RPL and RU are printed after these messages in hexadecimal and EBCDIC.

Note
The messages listed in this section may be issued in normal operation of
ATP/HPO. In addition, numerous further messages will be written to the ATPLOG
file if tracing is active. These are primarily intended for use by product support
personnel in diagnosing problems and are not included here.

5.10 ATP/HPO Installation and Operation Publication number PAT0001.012

Script load error codes

Running scripts
When ATP/HPO is requested to run a script which is not already in storage, it is
loaded from the indicated library. The script statements are read from disk, comment
statements are discarded, the script syntax is checked and the statements are
converted to a compressed internal format. A number of error conditions may be
encountered and are reported by an appropriate error code.

Error code reporting
The code will be reported on the ATPLOG file as part of the routine reporting of script
load activities. The code is also returned to the calling application so that the end user
may be informed of the error.

Major code reporting
The major codes are never reported directly to the MULTSESS/HPO user.
MULTSESS/HPO interprets the code and uses it to display message MS0201,
indicating a script load error has occurred, followed by a further message, in the range
MS0202-MS0207, to describe the error in more detail.

Syntax error reporting
The subcodes associated with error code 7, a syntax error, are reported to the end
user as part of MULTSESS/HPO message MS0206 to indicate the exact nature of the
error.

Error code listing
The codes which can occur, together with meaning, are listed in Error codes on page
5.11.

Chapter 5 - ATP/HPO messages 5.11

Error codes

code description

0 Script loaded successfully.

1 Script must be loaded. This code is for internal use and is
never reported to the user. A further code is returned when
the load completes.

2 Script is in the process of loading. This code is for internal
use and is never reported to the user. A further code is
returned when the load completes.

3 An abend occurred while loading the script.

4 Script library could not be found.

5 Script could not be found in the requested library.

6 Script could not be read.

7 Script contained a syntax error. One of the following sub-
codes further describes the error:

1 - an invalid script statement has been entered.

2 - a required operand is missing.

3 - an operand has unmatched quotes.

4 - an operand contains an invalid digit.

5 - spurious characters have been found after the
statement.

6 - script does not contain at least one END
statement.

7 - The statement is not allowed in this position.

8 - The statement was too long.

9 - an incorrect operand value has been specified.

8 No script storage was available to load the script.

5.12 ATP/HPO Installation and Operation Publication number PAT0001.012

Script termination codes

Completion codes
When a script terminates, one of the following completion codes is returned.

Code Description

0 Script successful.

1 Maximum GOTO limit exceeded.

2 Invalid cursor address detected.

3 Invalid Script command encountered.

4 Data entered into protected field.

5 Goto label cannot be found.

6 Script terminated by user.

n The user code specified on the END statement.

Error code
The error code is returned to the calling application along with the number of the last
statement executed and the number of script statements executed are returned.

Code 0
Code 0 will result in message MS0218 unless the user is in dynamic panel mode, in
which case no message is produced on successful script completion.

Codes 1 to 6
For codes 1 to 6, MULTSESS/HPO will interpret the code and display a message in the
range MS0209 to MS0214.

User code
A user code, a value greater than 6 specified on an END statement, will be reported in
message MS0219.

Chapter 5 - ATP/HPO messages 5.13

ATP/HPO termination error codes

Invalid dataflow termination
When ATP/HPO detects an invalid dataflow between itself and a caller the session is
terminated. The reason for this termination is written to the ATP/HPO log.

The termination codes are as follows:

Code Description

1 The VTAM RPL settings are incorrect.

2 The DRH header is invalid.

3 The DRHPCB address is invalid.

4 The DRH chaining is invalid.

5 The DRH Lutype is incorrect.

6 A readbuf has already been processed.

7 A readbuf has not yet been processed.

8 Script not yet loaded.

9 Readbuf invalid format.

10 Variable format invalid.

11 Readbuf request not allowed in chain.

Data Request Header
ATP/HPO protocol. The Data Request Header (DRH) prefixes all data passed between
ATP/HPO and a calling application and enforces the data transfer used by ATP/HPO.

These types of errors indicate a serious logic error has taken place and should be
immediately reported to your local support office.

5.14 ATP/HPO Installation and Operation Publication number PAT0001.012

This page intentionally left blank

Appendix - ATP/HPO sample script A.1

Appendix - ATP/HPO sample script

A this is the appendix number. Cover with a white rectangle

*
* The following script will:
* Log on to TSO using the MULTSESS userid and password
* Wait for the TSO ‘READY’ message
* Go into ISPF edit (option 2)
* Return to ISPF primary menu
* Go into browse and obtain a member list
* Select a member from the member list
* Split the screen at line 10
* Select option 6 on bottom half and issue LISTC
* Return to MULTSESS to display screen to the user.
*
* Wait for prompt for userid anywhere on line 1

 UNTIL 1,* ‘ENTER USERID -’
 WAIT
*
* Type TSO userid (same as MULTSESS userid)
*
 VAR &SYSUSER
 ENTER
*
* Should prompt for password - if not error code 10
*
 JUMPIF 3,* ‘ENTER CURRENT PASSWORD’
 END 10
*
* Type TSO password (same as MULTSESS password)
*
 VAR &SYSPASS
 ENTER
*
* If broadcast messages fill the screen (***), press ENTER
*
 WHILE *,2 ‘***’
 ENTER
*
* If not ‘READY’ then error code 20
*
 JUMPIF *,2 ‘READY’
 END 20
*
* Invoke ISPF option 2
*
 DATA ‘ISPF 2’
 ENTER
*
* Keep pressing PFK15 until back to ISPF primary menu
*
LABEL HIT-PFKEY-15
 PFKEY 15
 JUMPIF 1,27 ‘ISPF-PDF’
 GOTO HIT-PFKEY-15
*
* Select option 1 (Browse)
*
 DATA ‘1’
 ENTER
*
* Type the partitioned dataset name to be browsed
*
 CURSOR 5,18
 DATA ‘CAK0001’
 ERASE-EOF
 CURSOR 6,18
 DATA ‘CKATV10’
 ERASE-EOF
 CURSOR 7,18
 DATA ‘CNTL’
 ERASE-EOF
 ENTER

continued ...

A.2 ATP/HPO Installation and Operation Publication number PAT0001.012

*
* Select the second member from the list
*
 DOWN-CURSOR 3
 LEFT-CURSOR 19
 DATA ‘S’
 ENTER
*
* Split the screen at line 10
*
 CURSOR 10,80
 PFKEY 14
*
* Select option 6 (TSO) on bottom half of screen
*
 DATA ‘6’
 ENTER
*
* Issue LISTC command on bottom half of screen
*
 DATA ‘LISTC’
 ENTER
*
* End of script - show the screen to the user
*
 WAIT
 END

Index I.1

Index

* statement 4.3

A
ACBNAME startup option 2.2
address space

running ATP in a single address space 2.13
ATP

commands 3.1
control table 2.7, 3.8
messages 5.1

ATPCMD command
ABEND function 3.3
DISPLAY function 3.4
RESET function 3.5
SHUTDOWN function 3.6
TRACE function 3.7

ATPDIR command 3.8
ATPVAR command 3.9
ATTRIBUTE startup option 2.2

C
CLEAR statement 4.3
CODE startup option 2.2
commands 3.1
comments in scripts 4.1
CURSOR statement 4.4

D
DATA statement 4.4
date format

compliance with year 2000 2.2
DATE startup option 2.2
distribution libraries 2.1
DOWN-CURSOR statement 4.5

E
END statement 4.5
ENTER statement 4.6
ERASE-EOF statement 4.6
error

codes 5.11
messages 5.1

G
GOTO statement 4.7

I
IF statement 4.7
installation guide 2.1

J
JCL to run ATP 2.5
JUMPIF statement 4.8

L
LABEL statement 4.9
language statements, summary 4.2
LEFT-CURSOR statement 4.10
LIBRARY-PREFIX startup option 2.2, 2.7
LIBRARY-SUFFIX startup option 2.2, 2.7
LOCK statement 4.10
log messages 5.4
LOG statement 4.11
LOG-PAGE-LENGTH startup option 2.2

M
MAXGOTO startup option 2.2
MAXIMUM-RUSIZE startup option 2.3
MAXIMUM-STATEMENTS startup option 2.3
MAXIMUM-SUBTASKS startup option 2.3, 2.6
MAXIMUM-VARIABLES startup option 2.3
messages

generated by ATP 5.1
to Multsess 4.11
to operator 5.2

MSG statement 4.11

N
NON-SDLC-GOTO statement 4.12
NON-SDLC-WAIT statement 4.12
NULL startup option 2.3, 4.9

O
operator

commands 2.10
console messages 5.2

P
PAKEY statement 4.13
PASSWORD startup option 2.3
performance considerations 2.13
PERMANENT-SCRIPT startup option 2.3, 2.6
PFKEY statement 4.13
PUBLIC-LIBRARY startup option 2.3, 2.7

R
RESET operator command 2.6
RIGHT-CURSOR statement 4.14
RUN command 3.10

I.2 ATP/HPO Installation and Operation Publication number PAT0001.012

S
script

libraries 2.7
management 2.6

SCRIPT-STORAGE startup option 2.4, 2.6
SDLC-GOTO statement 4.14
SDLC-WAIT statement 4.15
shutting down ATP 3.6
startup options 2.2
STOP/MODIFY startup option 2.4
SYS1.VTAMLST 2.1

T
termination codes

ATP 5.13
scripts 5.12

termination statistics 2.12
TERMRUN command 3.11
TEST startup option 2.4
TRACE startup option 2.4
tracing ATP activity 2.4, 3.7
tracing scripts 3.10

U
UNTIL statement 4.15
UP-CURSOR statement 4.16

V
VAR statement 4.17
variables in scripts 2.9, 3.9, 4.17

W
WAIT statement 4.17
WHILE statement 4.18

Y
year 20000, date format 2.2

Reader’s Comment Form
If you find any discrepancy in the information contained in this publication,

please complete this form and mail it to the address below.

The authors may use, or distribute, any of the
information you supply in any way they consider

appropriate without incurring any obligation
whatsoever.

Please write your comments below and on the following
page and return this form to the

Documentation Manager
Horton Manor

PassGo Technologies Ltd
Ilminster, Somerset

TA19 9PY
England

Publication number PAT0001.012 - Twelth Edition (September 2001)
A
T
P

H
P
O

I
n
s
t
a
l
l
a
t
i
o
n

a
n
d

O
p
e
r
a
t
i
o
n

Reader’s Comment Form

A
T
P

H
P
O

I
n
s
t
a
l
l
a
t
i
o
n

a
n
d

O
p
e
r
a
t
i
o
n

	ATP/HPO Installation and Operation
	Preface
	Table of contents
	Chapter 1 - Introduction to ATP/HPO
	What is ATP/HPO?
	Interfaces to MULTSESS/HPO
	Major features of ATP/HPO

	Chapter 2 - Installation overview
	Loading the distribution tape
	Startup options
	JCL to run ATP/HPO
	Script management
	Script libraries
	Invoking scripts
	Using variables in scripts
	System operator interface
	Writing your own scripts
	Interpreting ATP/HPO statistics
	Integrity and performance

	Chapter 3 - MULTSESS/HPO ATP commands
	ATPCMD
	ATPCMD ABEND
	ATPCMD DISPLAY
	ATPCMD RESET
	ATPCMD SHUTDOWN
	ATPCMD TRACE
	ATPDIR
	ATPVAR
	RUN
	TERMRUN

	Chapter�4���ATP/HPO language statements
	Writing scripts
	Syntax rules
	Other rules
	ATP language statements
	Restricted keyboard functions in version 1.4

	Chapter 5 - ATP/HPO messages
	Error reporting
	Messages to the system operator
	ATP/HPO log messages
	Script load error codes
	Error codes
	Script termination codes
	ATP/HPO termination error codes

	Appendix - ATP/HPO sample script
	Index
	A
	C
	D
	E
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

